Extensions 1→N→G→Q→1 with N=C2 and Q=C22×C33⋊C2

Direct product G=N×Q with N=C2 and Q=C22×C33⋊C2
dρLabelID
C23×C33⋊C2216C2^3xC3^3:C2432,774


Non-split extensions G=N.Q with N=C2 and Q=C22×C33⋊C2
extensionφ:Q→Aut NdρLabelID
C2.1(C22×C33⋊C2) = C2×C4×C33⋊C2central extension (φ=1)216C2.1(C2^2xC3^3:C2)432,721
C2.2(C22×C33⋊C2) = C22×C335C4central extension (φ=1)432C2.2(C2^2xC3^3:C2)432,728
C2.3(C22×C33⋊C2) = C2×C338Q8central stem extension (φ=1)432C2.3(C2^2xC3^3:C2)432,720
C2.4(C22×C33⋊C2) = C2×C3312D4central stem extension (φ=1)216C2.4(C2^2xC3^3:C2)432,722
C2.5(C22×C33⋊C2) = C62.160D6central stem extension (φ=1)216C2.5(C2^2xC3^3:C2)432,723
C2.6(C22×C33⋊C2) = D4×C33⋊C2central stem extension (φ=1)108C2.6(C2^2xC3^3:C2)432,724
C2.7(C22×C33⋊C2) = C62.100D6central stem extension (φ=1)216C2.7(C2^2xC3^3:C2)432,725
C2.8(C22×C33⋊C2) = Q8×C33⋊C2central stem extension (φ=1)216C2.8(C2^2xC3^3:C2)432,726
C2.9(C22×C33⋊C2) = (Q8×C33)⋊C2central stem extension (φ=1)216C2.9(C2^2xC3^3:C2)432,727
C2.10(C22×C33⋊C2) = C2×C3315D4central stem extension (φ=1)216C2.10(C2^2xC3^3:C2)432,729

׿
×
𝔽